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The 10B and 11B nuclear quadrupole coupling constants of the bound and quasibound rotation-vibra-
tional levels of BH in the ground X

~1Σ+ and double-minimum excited B
~1Σ+ electronic states are evalu-

ated using ab initio calculated potentials and electric field gradients. The predicted expectation values
of the resonance states are found to be smooth continuations of those of the bound states, but their
dependence on the rotational and vibrational quantum numbers differs from the standard Dunham-
type polynomial dependences obtained for bound state constants.
Key words: Expectation values; 10B and 11B Nuclear quadrupole coupling constants; Resonance states;
Boron; Ab initio calculations.

Highly excited rotation-vibrational bound and quasibound resonance or metastable
states have a strong influence on the molecular internal state distributions and the reac-
tion characteristics1. Theoretically they have been described for a broad variety of sys-
tems2 and their importance for scattering phenomena is well established. Their direct
experimental detection in scattering experiments is a difficult and still unsolved task3

due to the insufficient energy resolution of the experimental setups used for this pur-
pose. Applying however high-resolution spectroscopic methods accurate energy meas-
urements of metastable states became recently possible especially in cases where the
reseonances have a long lifetime4–6. Metastable states, especially those which act as
“transition states” of reaction complexes, are crucially important in quantum mechan-
ical formulations of reaction dynamics. Their experimental and theoretical verification
is a challenging new field in modern molecular science.

The positions and wavefunctions of low-lying resonances were previously shown to
be very sensitive to small changes of the asymptotic form of the potential energy sur-
faces7. The same sensitivity can also be observed for the electric dipole transitions from
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metastable to bound states and for theoretical rate determinations of low-temperature
radiative association reactions. The effect on the other hand of the transitions from
bound to quasibound states on the mean internuclear separation of a diatomic model
system was recently found to be less significant8. Systematic studies of the behaviour
of the expectation values of molecular properties of quasibound states are rather sparse.
In the simple case of one-dimensional systems reliable calculations can be conveniently
done making use of the Pajunen’s approach8 based on Rayleigh–Schrodinger perturba-
tion theory formulated in terms of the complex Prufer phase function. For more-dimen-
sional problems this approach is not suitable and other alternative schemes have to be
adopted as for example the complex scaling method discussed recently9.

An especially simple procedure can be applied when dealing with molecular proper-
ties causing only small perturbations of the rotation-vibrational levels such as for
example in the fine and hyperfine splittings of spectral lines. In such a case, all degrees
of freedom except for rotational and vibrational motions can be integrated over and
using suitable basis sets the resulting diagonal elements of the perturbation matrix can
be absorbed into the total potential energy function. The energy positions of the per-
turbed quasibound states are then calculated using practically the same methods which
are usually applied for evaluating energies and lifetimes of the unperturbed states10–13.

In the present study the performance of the proposed procedure is tested evaluating
the expectation values of the nuclear quadrupole coupling constants of the BH mole-
cule. The actual calculations are done for the 10B1H and 11B1H isotopic species in their
ground X

~
1Σ+ and double-minimum excited B

~
1Σ+ electronic states for which complete

sets of accurate ab initio potential energy and electric field gradient data are available
from the literature14–19. The nuclear quadrupole coupling is a simple potential-like per-
turbation which can be exactly accounted for by incorporating it into the associated
rotation-vibrational Schrödinger equations20 and the corresponding nuclear coupling
splittings are expected to exhibit a strong vibrational dependence21. In addition, due to
the fairly large nuclear quadrupole moments of the boron isotopes the resulting split-
tings of the spectra are most probably detectable especially when applying microwave
spectroscopy techniques recently developed by Carrington and his coworkers6.

THEORETICAL

Effective Hamiltonians

In this study we restrict ourselves to the case of well isolated electronic states of dia-
tomic molecules possesing only one nucleus with nonzero quadrupole moment. In this
case, the Hamiltonian describing interaction between a nuclear quadrupole moment and
molecular electric fields may be expressed in the following form20
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ĤNQ
iAIJF(R) = −eQA qm

iA(R) f(I,J,F)  , (1)

where QA is effective nuclear quadrupole moment of the “quadrupole active” nucleus
A, R is the separation of the nucleus A from the other nucleus (possesing no quadrupole
moment), qm

iA(R) is the zz component of the electric field gradient (EFG) tensor at the
nucleus A taken along the direction of the molecular axis, F is the quantum number of
the total angular momentum, F̂ = Î + Ĵ (Î and Ĵ being the nuclear spin and angular mo-
ment caused by molecular rotation), and f(I,J,F) is Casimir’s function

f(I, J, F) = 

3
4
C(C + 1) − I(I + 1) J(J + 1)

2I(2I − 1) (2J − 1) (2J + 3)

C = F(F + 1) − I(I + 1) − J(J + 1)  . (2)

The function qm
iA(R), pertaining to a given electronic molecular state i, can easily be

evaluated using the corresponding Born–Oppenheimer wavefunction Ψi(r
_

k;R)

qm
iA(R) = eZn

2
R3 − e 〈Ψi(r
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k; R) 


∑ 
k
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rkA
5



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_
k; R) 〉r

_
k
  , (3)

where Zn is the atomic number of the other nucleus and coordinates are chosen with
nucleus A at the origin.

The unperturbed ro-vibrational energies, E, and wavefunctions, χ(R), pertaining to
the given electronic state can be obtained as solutions of the following Schrodinger
equation

d2

dR2 χ(R) + 
2µ
h−2 




E − Vi(R) − 

h−2

2µ 
J(J + 1)

R2




 χ(R) = 0 (4)

with

χ(R) ≡ χvJ(R)   for  EvJ < 0

≡ χkJ(R)   for  E > 0 ,  E = (h−2k2)/(2µ)  . (5)
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The wavefunctions are normalized such that for the bound states (E < 0)

∫ χvJ
2 (R) dR = 1 and for the continuum states with positive energies the functions χkJ(R)

are assumed to approach an asymptotic sinoidal form according to

lim
R→∞

 = sin (kR − πJ/2 + δJ) (6)

with δJ describing the phase shift of J-th partial wave.
The nuclear quadrupole coupling term can nearly always be treated as a small pertur-

bation of the ro-vibrational Hamiltonian. Thus, the corresponding energy splittings of
the bound ro-vibrational states can be approximated (fairly quantitatively) by means of
the first-order perturbation theory

∆EiAvIJF
(1)  = 〈χvJ(R) |H

^
NQ
iAIJF| χvJ(R)〉R =

= −eQA f(I,J,F) 〈χvJ(R) |qm
iA(R)| χvJ(R)                  〉R  , (7)

where the quantities

(NQCC)iAvJ = eQA 〈v, J |qm
iA(R)| v, J〉R (8)

provides theoretical rationalization of the so-called nuclear quadrupole coupling con-
stants (NQCC) which are usually derived from experimental spectra. The “exact”
values of the nuclear quadrupole energies, EvIJF, are obtainable as the eigenvalues of
the radial Schrodinger equation (4) with the following effective potential

Vi(R) + 
h−2

2µ 
J(J + 1)

R2  − eQA qm
iA(R) f(I,J,F)  . (9)

Theoretical rationalization of the nuclear quadrupole splittings in the resonance states is
less straightforward. The problem stems from the fact that the resonance wavefunctions
are not square integrable and cannot be thus used for the standard evaluation of the
expectation values like that one given by Eq. (8). To solve this problem one can use
either appropriate convergence factors (which is de facto equivalent to using the com-
plex scaling method; for more details and references see ref.9) or analytic continuation
which allows evaluation of the expectation values of the resonance states by means of
the continuum states having energies close to the resonance energies22. Quite generally,
however, the resulting, mathematically correct, expectation values are complex num-
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bers (this seems to cast some doubts on the formal mathematical correctness of the
definition of the expectation value in ref.8).

Though it makes sense, and is also fairly feasible, dealing with complex nuclear
quadrupole constants (or any other spectroscopic constants) is rather inconvenient. This
leads us to abandon their usual rationalization via the expectation values of the electric
field gradient qm

iA(R) and replace it by a more “orthodox” definition. This definition is
based on the fact that the “exact” evaluation of the nuclear quadrupole splittings is
legitimate not only for the bound states, but also for all the continuum states, particu-
larly for the long-living resonance states which can be probed spectroscopically. Once
the resonance states are localized with the use of any of the above-mentioned tech-
niques10–13 (let us adopt the common convention and label them |v,J〉 as a continuation
of bound states into the continuum region), we can repeatedly solve the radial Schröd-
inger equation with the perturbed potential (9) and obtain the quadrupole splittings in
the same way as for the bound states. Using Eq. (7), obviously, the splittings can be
used to evaluate the sought effective and real nuclear quadrupole constants for the
studied resonance states 〈χkJ(R) |qm

iA(R)| χkJ(R)〉eff.

Computational Details

The electric field gradient (EFG) data for the X~1Σ+ and B~1Σ+ states of boron hydride are
taken from the literature14,16. The data points are interpolated using cubic splines
whereas extrapolation to their asymptotic values is done assuming a aR–6 + bR–8 de-
pendence. Potential energies for the X~1Σ+ state18 and the B~1Σ+ state potential which are
merged from the data in refs16,19 are summarized in Table I. Nuclear quadrupole mo-

TABLE I
Potential energy curve of the B

~1Σ+ state of BH molecule

R, a.u. E, cm–1 R, a.u. E, cm–1 R, a.u. E, cm–1

1.20  79 373.3 3.25  –9 786.0 8.00 –7 058.0

1.40  32 181.9 3.50  –8 300.2 9.00 –4 670.1

1.60   6 025.3 3.75  –7 659.3 10.00 –2 855.0

1.90 –11 634.0 4.00  –7.828.3 12.00  –615.7

2.00 –14 302.8 4.25  –8 844.5 15.00   –57.6

2.10 –15 911.6 4.50 –10 001.1 18.00   –11.5

2.30 –17 070.4 5.00 –11 653.8 21.00    –4.5

2.50 –16 491.0 5.50 –12 378.0 25.00    –1.6

2.75 –14 526.7 6.00 –12 066.4

3.00 –12 051.0 7.00  –9 832.1
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FIG. 1
Vibrational dependences of the
boron NQCCs in the X

~
1Σ+ elec-

tronic state of 10BH. Squares denote
quasibound states; J = 10 (1), 20
(2), 30 (3), 40 (4), 50 (5)

TABLE II
Vibrational dependences of the boron NQCCs in the X

~1Σ+ electronic state of 10BH for selected rota-
tional states (B bound, Q quasibound)

v
NQCC, MHz

J = 10 J = 20 J = 30 J = 40 J = 50

 0 –13.594 B –13.161 B –12.475 B –11.571 B –10.514 B 

 1 –13.236 B –12.817 B –12.147 B –11.278 B –10.288 B 

 2 –12.883 B –12.480 B –11.840 B –11.016 B –10.087 B 

 3 –12.544 B –12.162 B –11.557 B –10.765 B –9.946 B

 4 –12.228 B –11.865 B –11.281 B –10.559 B –9.843 Q

 5 –11.927 B –11.577 B –11.038 B –10.389 B –9.794 Q

 6 –11.640 B –11.317 B –10.828 B –10.250 B –9.847 Q

 7 –11.384 B –11.089 B –10.649 B –10.148 B –10.286 Q 

 8 –11.157 B –10.891 B –10.497 B –10.099 B

 9 –10.960 B –10.719 B –10.379 B –10.120 Q

10 –10.789 B –10.576 B –10.305 B –10.258 Q

11 –10.645 B –10.469 B –10.282 B –10.626 Q

12 –10.536 B –10.404 B –10.326 B

13 –10.467 B –10.386 B –10.463 Q

14 –10.442 B –10.428 B –10.706 Q

15 –10.468 B –10.542 B

16 –10 557 B –10.728 B

17 –10.707 B –11.005 Q

18 –10.909 B

19 –11.272 B
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TABLE III
Vibrational dependences of the boron NQCCs in the X

~1Σ+ electronic state of 11BH for selected rota-
tional states (B bound, Q quasibound)

v
NQCC, MHz

J = 10 J = 20 J = 30 J = 40 J = 50

 0 –6.523 B –6.318 B –5.991 B –5.560 B –5.056 B 

 1 –6.353 B –6.153 B –5.834 B –5.420 B –4.947 B 

 2 –6.184 B –5.992 B –5.687 B –5.294 B –4.850 B 

 3 –6.021 B –5.840 B –5.551 B –5.173 B –4.781 B

 4 –5.870 B –5.698 B –5.419 B –5.074 B –4.730 Q

 5 –5.726 B –5.560 B –5.302 B –4.992 B –4.704 Q

 6 –5.589 B –5.435 B –5.201 B –4.924 B –4.722 Q

 7 –5.466 B –5.325 B –5.115 B –4.874 B –4.881 Q

 8 –5.357 B –5.230 B –5.042 B –4.848 B

 9 –5.263 B –5.147 B –4.984 B –4.855 Q

10 –5.180 B –5.078 B –4.947 B –4.914 Q

11 –5.111 B –5.026 B –4.934 B –5.072 Q

12 –5.058 B –4.994 B –4.952 B

13 –5.024 B –4.983 B –5.013 B

14 –5.010 B –5.001 B –5.124 Q

15 –5.021 B –5.053 B

16 –5.062 B –5.139 B

17 –5.131 B –5.264 Q

18 –5.226 B

19 –5.385 B
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FIG. 2
Rotational dependences of the
boron NQCCs in the X

~
1Σ+ elec-

tronic state of 10BH. Squares denote
quasibound states; v = 0 (1), 5 (2),
10 (3), 15 (4), 20 (5)
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ment values of 0.08472 and 0.04065 barns are used for the 10B and 11B isotopes, re-
spectively.

The radial Schrodinger equations are solved numerically applying the standard
Numerov–Cooley finite difference procedure23 with 8 000 integration points uniformly
distributed in the range from 0 to 70 a.u. This ensures a high accuracy of the integration
scheme and a safe convergence behaviour for all the calculated resonance states of both
isotopomers. The resonances are localized using the internal amplitude criterion ap-

TABLE IV
Rotational dependences of the boron NQCCs in the X

~1Σ+ electronic state of 10BH for selected vibra-
tional states (B bound, Q quasibound)

J
NQCC, MHz

v = 0 v = 5 v = 10 v = 15 v = 20

 0 –13.749 B –12.053 B –10.871 B –10.469 B –11.500 B

 3 –13.732 B –12.039 B –10.862 B –10.469 B –11.531 B

 6 –13.690 B –12.005 B –10.839 B –10.468 B –11.607 B

 9 –13.622 B –11.950 B –10.803 B –10.468 B –11.754 Q

12 –13.529 B –11.874 B –10.755 B –10.472 B

15 –13.411 B –11.779 B –10.696 B –10.485 B

18 –13.269 B –11.664 B –10.627 B –10.512 B

21 –13.104 B –11.530 B –10.550 B –10.563 B

24 –12.915 B –11.380 B –10.468 B –10.651 B

27 –12.706 B –11.215 B –10.384 B –10.805 Q

30 –12.475 B –11.038 B –10.305 B

33 –12.225 B –10.850 B –10.237 B

36 –11.956 B –10.654 B –10.197 B

39 –11.670 B –10.455 B –10.221 Q

42 –11.369 B –10.257 B –10.432 Q

45 –11.055 B –10.064 B

48 –10.732 B  –9.888 Q

51 –10.404 B  –9.759 Q

54 –10.074 B  –9.820 Q

57  –9.746 Q

60  –9.428 Q

63  –9.139 Q

66  –8.932 Q
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proach10 which gives also directly halfwidths and the Airy function localization scheme
including a semiclassical halfwidth calculation11. Both approaches provided practically
identical energy positions and the halfwidths differ by not more than 1–2 per cent in the
medium range of their values.

RESULTS AND DISCUSSION

The calculations of the boron nuclear coupling constants (NQCC) are performed for all
the spectroscopically relevant bound and quasibound rotation-vibrational states of the

TABLE V
Rotational dependences of the boron NQCCs in the X

~1Σ+ electronic state of 11BH for selected vibra-
tional states (B bound, Q quasibound)

J
NQCC, MHz

v = 0 v = 5 v = 10 v = 15 v = 20

 0 –6.598 B –5.786 B –5.220 B –5.023 B –5.499 B

 3 –6.589 B –5.780 B –5.215 B –5.022 B –5.515 B

 6 –6.569 B –5.764 B –5.204 B –5.021 B –5.553 B

 9 –6.537 B –5.737 B –5.187 B –5.021 B –5.627 Q

12 –6.493 B –5.701 B –5.164 B –5.022 B

15 –6.436 B –5.656 B –5.136 B –5.028 B

18 –6.369 B –5.601 B –5.103 B –5.040 B

21 –6.290 B –5.538 B –5.066 B –5.062 B

24 –6.201 B –5.466 B –5.026 B –5.102 B

27 –6.101 B –5.387 B –4.986 B –5.171 Q

30 –5.991 B –5.302 B –4.947 B

33 –5.872 B –5.212 B –4.914 B

36 –5.744 B –5.119 B –4.892 B

39 –5.607 B –5.024 B –4.899 Q

42 –5.464 B –4.928 B –4.984 Q

45 –5.314 B –4.836 B

48 –5.160 B –4.750 Q

51 –5.003 B –4.686 Q

54 –4.846 B –4.692 Q

57 –4.689 Q

60 –4.536 Q

63 –4.396 Q

66 –4.291 Q
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10BH and 11BH isotopomers in their X
~

1Σ+ and B
~

1Σ+ electronic states. Typical results of
these calculations are collected in Tables II–VI and shown in Figs 1–3. To a large
extent the ratio NQCC(10BH)/NQCC(11BH) is nearly state independent and is approxi-

TABLE VI
Rotational dependences of the boron NQCCs in the B

~1Σ+ electronic state of 10BH and 11BH for v = 0
and v = 1 states (B bound, Q quasibound)

J

NQCC, MHz

10BH 11BH

v = 0 v = 1 v = 0 v = 1

 2 –10.242 B –10.002 B –4.915 B –4.800 B

 4 –10.231 B –9.989 B –4.910 B –4.794 B

 6 –10.215 B –9.969 B –4.902 B –4.784 B

 8 –10.192 B –9.941 B –4.891 B –4.771 B

10 –10.163 B –9.905 B –4.877 B –4.754 B

12 –10.127 B –9.861 B –4.860 B –4.733 B

14 –10.085 B –1.756 B –4.840 B –0.843 B

16 –10.037 B –1.742 B –4.817 B –0.836 B
17 –10.010 B –1.735 B –4.804 B –0.833 B

18  –9.982 B –1.727 B –4.791 B –0.829 B

19  –9.952 B –1.718 B –4.776 B –0.825 B

20  –1.710 B –9.920 B –0.821 B –4.761 B

21  –1.700 B –9.886 B –0.816 B –4.745 B

22  –1.691 B –1.618 B –0.812 B –0.777 B

23  –1.681 B –1.607 B –0.807 B –0.772 B

24  –1.670 B –1.596 B –0.802 B –0.766 B
25  –1.659 B –1.584 B –0.797 B –0.761 B

30  –1.599 B –1.521 B –0.768 B –0.731 B

40  –1.451 B –1.369 B –0.698 B –0.658 B

50  –1.269 B –1.191 B –0.611 B –0.574 B

60  –1.056 B –0.995 B –0.510 B –0.480 B

70  –0.825 B –0.788 B –0.399 B –0.381 B

80  –0.595 B –0.580 B –0.289 B –0.282 B

85  –0.489 Q –0.479 Q –0.238 Q –0.233 Q
90  –0.392 Q –0.382 Q –0.191 Q –0.187 Q

95  –0.306 Q –0.289 Q –0.150 Q –0.142 Q

100  –0.229 Q –0.204 Q –0.113 Q –0.101 Q

105  –0.152 Q –0.125 Q –0.076 Q –0.064 Q
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mately equal to the ratio of the 10B and 11B nuclear quadrupole moments. The figures
therefore provide an illustration for the both isotopomers.

In Fig. 1 and also in Tables II and III typical vibrational dependences of the calcu-
lated NQCCs are described. The “parabolic” shape of these dependences is very similar
to the shape of the pertinent EFG and with increasing delocalization of the molecular
wavefunctions towards the asymptotic region. The NQCCs of the resonance states ap-
pear as smooth continuations of the bound state constants. The dependences of the
NQCCs on the rotational quantum numbers shown in Fig. 2 and summarized in Tables IV
and V are more complicated compared to the pure vibrational states. Nevertheless, the
NQCCs of the resonances can again be viewed as smooth continuations of the bound
state values.

The excited B
~1Σ+ state of boron hydride has a double-minimum potential forcing all

the low-lying bound states to be located in one of the potential wells. This leads to a
rather peculiar stepwise behaviour of the dependences of the calculated NQCCs on the
rotation-vibrational quantum numbers such as described previously15. The resonance
states are totally unaffected by the double-minimum character of the potential because
the potential barrier is much below the energy of the dissociation limit. Therefore, like
in the case of a single-minimum potential, the calculated NQCC values are obtained as
smooth continuations of their bound state counterparts (Fig. 3 and Table VI).

CONCLUSIONS

Model calculations are performed in the present study to test the applicability of the
standard first-order perturbation theory approach used for evaluating expectation values
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FIG. 3
Rotational dependence of the boron NQCCs in the
B
~

1Σ+ electronic state of 10BH for v = 1 states.
Squares denote quasibound states; the upper panel
is a magnification of the lower one
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of bound state properties in one-dimensional systems also to quasibound state proper-
ties. For this purpose the 10B and 11B nuclear quadrupole coupling constants of the
bound and quasibound rotation-vibrational states of boron hydride in the ground X

~1Σ+

and the double-minimum excited B
~

1Σ+ states are evaluated from ab initio calculated
potential energies and electric field gradients. It is shown here that the NQCC values
obtained for the quasibound states are smooth continuations of their bound state
counterparts. The dependence of the quasibound states constants on the rotation-vibra-
tional quantum numbers however is different from the situation for the bound state
levels. This means that they cannot be obtained by simple extrapolations from the
bound states values, but only by explicit calculations such as performed in the present
study.

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic
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